EXERCISE PREVENTS AGE-RELATED MEMORY DECLINE: THE ROLE OF NEUROTROPHIC FACTORS

Arina Windri Rivarti, Lilik Herawati, Hanik Badriyah Hidayati
  MNJ, pp. 88-94  

Abstract


Increasing aging population causes an increased prevalence of neurodegenerative diseases such as dementia that is associated with memory decline. Developing strategies for the prevention and therapy of age-related dementia is important to reduce the burden of treatment costs. Physical exercise is known to prevent cognitive decline and improve cognitive abilities. Physical exercise with moderate intensity for at least 150 minutes/week or 30 minutes/day for 5 days can reduce the incidence of degenerative diseases in the elderly. Thus, physical exercise appears as a simple, inexpensive, and affordable non-pharmacological therapy for most people. The processes of neurogenesis and neuronal survival involve the role of neurotrophic factors including BDNF, IGF-1 and VEGF, which are the three main neurotrophic factors that are known to increase after exercise. Many publications discuss about these neurotrophic factors, but their mechanism of signals and changes related to aging and exercise have not been completely studied. The purpose of this review is to discuss the mechanism of signals and changes of neurotrophic factors (focuses on BDNF, IGF-1, and VEGF) related to aging and exercise.


Keywords


Exercise, aging, BDNF, IGF-1, VEGF

Full Text:

PDF

References


United Nations, Department of Economic and Social Affairs PD.World population ageing. New York: United Nations; 2015. Available from:https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf

Wahl D, Solon-Biet SM, Cogger VC, et al. Aging, lifestyle and dementia. Neurobiol Dis; 2019.130(9):104481. DOI:10.1016/j.nbd.2019.104481

Lastri DN, Alwahdy AS. Clinical and radiologic approach to probable mixed dementia (vascular dementia and progressive supranuclear palsy). Malang Neurol J; 2020.6(1):46-50. DOI:10.21776/ub.mnj.2020.006.01.10

Wimo A, Guerchet M, Ali GC, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimer’s Dement; 2017.13(1):1-7. DOI:10.1016/j.jalz.2016.07.150

Nelson ME, Rejeski WJ, Blair SN, et al. Physical activity and public health in older adults: recommendation from the american college of sports medicine and the american heart association. Med Sci Sports Exerc; 2007.39(8):1435-1445. DOI:10.1249/mss.0b013e3180616aa2

Vilela TC, Muller AP, Damiani AP, et al. Strength and aerobic exercises improve spatial memory in aging rats through stimulating distinct neuroplasticity mechanisms.Mol Neurobiol; 2017.54(10):7928-7937. DOI:10.1007/s12035-016-0272-x

Tsai SF, Ku NW, Wang TF, et al. Long-term moderate exercise rescues age-related decline in hippocampal neuronal complexity and memory. Gerontology; 2018.64(6):551-561. DOI:10.1159/000488589

Vanzella C, Neves JD, Vizuete AF, et al. Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of wistar rats. Behav Brain Res; 2017.334(July):78-85. DOI: 10.1016/j.bbr.2017.07.034

Wang S, Chen L, Zhang L, et al. Effects of long-term exercise on Spatial learning, memory ability, and cortical capillaries in aged rats. Med Sci Monit; 2015.21:945-954. DOI:10.12659/MSM.893935

Ohtomo R, Kinoshita K, Ohtomo G, et al. Treadmill exercise suppresses cognitive decline and increases white matter oligodendrocyte precursor cells in a mouse model of prolonged cerebral hypoperfusion.Transl Stroke Res; 2019. DOI:10.1007/s12975-019-00734-7

Littlefield AM, Setti SE, Priester C, Kohman RA. Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice. J Neuroinflammation; 2015.12(1):1-12. DOI:10.1186/s12974-015-0362-0

Tsai SF, Chen PC, Calkins MJ, Wu SY, Kuo YM. Exercise counteracts aging-related memory impairment: a potential role for the astrocytic metabolic shuttle. Front Aging Neurosci; 2016.8(3):1-12. DOI:10.3389/fnagi.2016.00057

Yau SY, Gil-Mohapel J, Christie BR, So KF. Physical exercise-induced adult neurogenesis: A good strategy to prevent cognitive decline in neurodegenerative diseases? Biomed Res Int. 2014. DOI:10.1155/2014/403120

Maass A, Düzel S, Brigadski T, Goerke M, Becke A, Sobieray U. NeuroImage relationships of peripheral IGF-1 , VEGF and BDNF levels to exercise-related changes in memory , hippocampal perfusion and volumes in older adults.Neuroimage; 2016.131:142-154. DOI:10.1016/j.neuroimage.2015.10.084

Tapia-arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF : focus on hypothalamic function. Front Neuroendocrinol; 2004.25:77-107. DOI:10.1016/j.yfrne.2004.04.001

Prabawati R, Ratnawati R, Rahayu M, Prakosa A. Effect anthocyanin of purple potato gunung kawi on mda levels , expression of caspase-3 , and spatial memory function on diabetic. Malang Neurol J; 2019.5(1):34-41. DOI:10.21776/ub.mnj.2019.005.01.6

Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI. The involvement of BDNF, NGF and GDNF in aging and alzheimer’s disease. Aging Dis; 2015.6(5):331-341. DOI:10.14336/AD.2015.0825

Chen MJ, Russo-neustadt AA. Exercise activates the phosphatidylinositol 3-kinase pathway. Mol Brain Res; 2005.135:181-193. DOI:10.1016/j.molbrainres.2004.12.001

Czuba E, Was M, Steliga A, Morys J. BDNF : A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol; 2018.38:579-593. DOI:10.1007/s10571-017-0510-4

Zhang J, Cai CY, Wu HY, Zhu LJ, Luo CX, Zhu DY. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors. Sci Rep; 2016.6(3). DOI:10.1038/srep29551

Ortega-Martínez S. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci; 2015;8(8):1-12.

DOI:10.3389/fnmol.2015.00046

Petzold A, Psotta L, Brigadski T, Endres T, Lessmann V. Neurobiology of Learning and memory chronic BDNF deficiency leads to an age-dependent impairment in spatial learning. Neurobiol Learn Mem; 2015.120:52-60. DOI:10.1016/j.nlm.2015.02.009

Calabrese F, Guidotti G, Racagni G, Riva MA. Neurobiology of aging reduced neuroplasticity in aged rats : a role for the neurotrophin brain-derived neurotrophic factor.Neurobiol Aging; 2013.1-9. DOI:10.1016/j.neurobiolaging.2013.06.014

Obiang P, Maubert E, Bardou I, et al. Neurobiology of learning and memory enriched housing reverses age-associated impairment of cognitive functions and tpa-dependent maturation of BDNF. Neurobiol Learn Mem; 2011.96(2):121-129. DOI:10.1016/j.nlm.2011.03.004

Rage F, Binam F, Arancibia S, Tapia-arancibia L. Effect of aging on the expression of BDNF and TrkB isoforms in rat pituitary. Neurobiol Aging; 2007.28:1088-1098. DOI: 10.1016/j.neurobiolaging.2006.05.013

Sleiman SF, Henry J, Al-Haddad R, et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β- hydroxybutyrate. Elife; 2016.5(6):1-21. DOI:10.7554/eLife.15092

Nigam SM, Xu S, Kritikou JS, et al. Exercise and BDNF reduce Aβ production by enhancing α- secretase processing of APP.J Neurochem; 2018.142(2):286-296. DOI:10.1111/jnc.14034.Exercise

Puche JE, Castilla-Cortázar I. Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med; 2012.10(1):1-29. DOI:10.1186/1479-5876-10-224

Le Grevès M, Le Grevès P, Nyberg F. Age-related effects of IGF-1 on the NMDA-, GH- and IGF-1-receptor mRNA transcripts in the rat hippocampus. Brain Res Bull; 2005.65(5):369-374. DOI:10.1016/j.brainresbull.2005.01.012

Molina DP, Ariwodola OJ, Weiner JL, Brunso-Bechtold JK, Adams MM. Growth hormone and insulin-like growth factor-I alter hippocampal excitatory synaptic transmission in young and old rats. Age (Omaha); 2013.35(5):1575-1587. DOI:10.1007/s11357-012-9460-4

Lee CH, Ahn JH, Park JH, et al. Decreased insulin-like growth factor-I and its receptor expression in the hippocampus and somatosensory cortex of the aged mouse. Neurochem Res; 2014.39(4):770-776. DOI:10.1007/s11064-014-1269-3

Lee TK, Chen BH, Lee JC, et al. Age-dependent decreases in Insulin-like growth factor-I and its receptor expressions in the gerbil olfactory bulb. Mol Med Rep; 2018.17(6):8161-8166. DOI:10.3892/mmr.28.886

Ashpole NM, Sanders JE, Hodges EL, Yan H, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging brain.Exp Gerontol;2016.68:76-81. DOI:10.1016/j.exger.2014.10.002.GROWTH

Trejo JL, Carro E, Lopez-Lopez C, Torres-Aleman I. Role of serum insulin-like growth factor I in mammalian brain aging. Growth Horm IGF Res;2004.14:39-43. DOI:10.1016/j.ghir.2004.03.010

Shi L, Linville MC, Tucker EW, Sonntag WE, Brunso-Bechtold JK. Differential effects of aging and insulin-like growth factor-1 on synapses in CA1 of rat hippocampus. Cereb Cortex;2005.15(5):571-577. DOI:10.1093/cercor/bhh158

Frystyk JAN. Exercise and the growth hormone – insulin-like growth factor axis.Med Sci Sport Exerc; 2009.(30):58-66. DOI:10.1249/MSS.0b013e3181b07d2d

Carro E, Nuñez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci;2000.20(8):2926-2933. DOI:10.1523/jneurosci.20-08-02926.2000

Trejo L, Carro E, Torres-Aleman I. Circulating insulin-like growth factor i mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci; 2001.21(5):1628-1634. DOI: 10.1523/JNEUROSCI.21-05-01628.2001

Glasper ER, Llorens-Martin M V., Leuner B, Gould E, Trejo JL. Blockade of insulin-like growth factor-I has complex effects on structural plasticity in the hippocampus. Hippocampus;2010.20(6):706-712. DOI:10.1002/hipo.20672

Peng Gao, PhD M, Fanxia Shen M, Rodney Allanigue Gabriel, BS, David Law M, et al. Attenuation of brain response to VEGF-mediated angiogenesis and neurogenesis in aged mice. Natl Institutes Heal; 2011.46(4):564-574. DOI:10.1016/j.cortex.2009.08.003.Predictive

LeBlanc AJ, Shipley RD, Kang LS, Muller-Delp JM. Age impairs Flk-1 signaling and NO-mediated vasodilation in coronary arterioles. Am J Physiol - Hear Circ Physiol; 2008.295(6):2280-2289. DOI:10.1152/ajpheart.00541.2008

Fabel K, Fabel K, Tam B, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci; 2003.18:2803-2812. DOI:10.1046/j.1460-9568.2003.03041.x

Rich B, Scadeng M, Yamaguchi M, Wagner PD, Breen EC. Skeletal myofiber vascular endothelial growth factor is required for the exercise training-induced increase in dentate gyrus neuronal precursor cells. J Physiol; 2017.595(17):5931-5943. DOI:10.1113/JP273994

Zhao Y, Pang Q, Liu M, Pan J, Xiang B. Treadmill Exercise promotes neurogenesis in ischemic rat brains via caveolin-1 / VEGF signaling pathways. Neurochem Res; 2017.42(2):387-397. DOI:10.1007/s11064-016-2081-z

Han W, Song X, He R, et al. Epilepsy &behavior VEGF regulates hippocampal neurogenesis and reverses cognitive de fi cits in immature rats after status epilepticus through the VEGF R2 signaling pathway. Epilepsy Behav; 2017.68:159-167. DOI:10.1016/j.yebeh.2016.12.007


Refbacks

  • There are currently no refbacks.