EFFECT ANTHOCYANIN OF PURPLE POTATO GUNUNG KAWI ON MDA LEVELS, EXPRESSION OF CASPASE-3, AND SPATIAL MEMORY FUNCTION ON DIABETIC WISTAR RATS

Authors

  • Risma Karlina Prabawati Department of Neurology Faculty of Medicine Brawijaya University, Malang
  • Retty Ratnawati Department of Physiology Faculty of Medicine Brawijaya University, Malang
  • Masruroh Rahayu Department of Neurology Faculty of Medicine Brawijaya University, Malang
  • Ardani Galih Prakosa Department of Physiology Faculty of Medicine Brawijaya University, Malang

Keywords:

Anthocyanins, hyperglycemia, MDA, caspase-3, spatial memory function

Abstract

Background: Hyperglycemia condition will decline cognitive function. No basic therapy has been 2 found for this. Purple potato anthocyanins are useful as anti-inflammatory, antioxidant, neuroprotectant, and antidiabetic.
Objective: Evaluate effect of purple potato’s anthocyanins on MDA levels, brain’s caspase-3 expressiom, and spatial memory function in diabetic model of Wistar rats.
Methods: This is an experimental study using diabetic model rats. The sample was divided into negative and positive control, anthocyanin dose of 10 mg/kg, 20 mg/kg, and 80 mg/kg groups. MDA levels were measured using spectrophotometer, caspase-3 expression with immunohistochemistry, and spatial memory function using Morris water maze test.
Results: Tukey test showed that anthocyanin 10, 20, and 80 mg/kg lowering MDA levels, caspase-3 expression, and Morris water maze’s travel time compared to control positive (p = 0.000). But anthocyanin 80 mg/kg make a significant increase on these three variabels compared to 10 and 20mg/kg groups (p = 0.010). Pearson test showed that there no correlation between anthocyanin’s dose, MDA levels, caspase-3 expression, and Morris water maze test.
Conclusion: Anthocyanin doses 10 and 20 mg/kg lowering MDA levels and caspase-3 expression, also improves spatial memory function on diabetic model of Wistar rats.

Downloads

Download data is not yet available.

References

Lin JD, Hseih CH, Lian WC, Pei D, Liang YJ, Chen YL. Metabolic syndrome in drug-naïve Chinese patients with insulin-sensitive and insulin-resistant type 2 diabetes. Ann Saudi Med; 2016. 36(3):203–9. DOI: 10.5144/0256-4947.2016.203

Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus - Present and future perspectives. Nat Rev Endocrinol; 2012. 8(4):228–36. DOI: http://dx.doi.org/10.1038/nrendo.2011.183

Centers for disease control and prevention c. national diabetes statistics report: estimates of diabetes and its burden in the united states. atlanta, ga: centers for disease control and prevention; 2017. US Dep Heal Hum Serv; 2017. (Cdc):2009–12. Available from: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf

Idris H, Hasyim H, Utama F. Analysis of diabetes mellitus determinants in indonesia: a study from the indonesian basic health research 2013. Acta Med Indones; 2017. 49(4):291–8. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29348378

Yonguc GN, Dodurga Y, Adiguzel E, Gundogdu G, Kucukatay V, Ozbal S, et al. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene; 2015. 555(2):119–26. DOI: http://dx.doi.org/10.1016/j.gene.2014.10.052

Cai Z, Yan Y, Wang Y. Minocycline alleviates betaamyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder. Clin Interv Aging; 2013. 8:1089–95. DOI https://doi.org/10.2147/CIA.S46536

Gutierres JM, Carvalho FB, Schetinger MRC, Marisco P, Agostinho P, Rodrigues M, et al. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer’s t ype. Life Sci; 2014. 96(1–2):7–17. DOI: http://dx.doi.org/10.1016/j.lfs.2013.11.014

Zhang X, Xu L, He D, Ling S. Endoplasmic reticulum stress-mediated hippocampal neuron apoptosis involved in diabetic cognitive impairment. Biomed Res Int; 2013. 2013. DOI: http://dx.doi.org/10.1155/2013/924327

Yoshida K, Mori M, Kondo T. Blue flower color development by anthocyanins: From chemical structure to cell physiology. Nat Prod Rep; 2009. 26(7):884–915. DOI: 10.1039/b800165k

Min B, McClung AM, Chen MH. Phytochemicals and antioxidant capacities in rice brans of different color. J Food Sci; 2011. 76(1):117–26. DOI: 10.1111/j.17503841.2010.01929.x

Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF. Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathol; 2010. 20(3):598–612. DOI: 10.1111/j.1750-3639.2009.00339

Rahman A, Rao MS, Khan KM. Intraventricular infusion of quinolinic acid impairs spatial learning and memory in young rats: A novel mechanism of leadinduced neurotoxicity. J Neuroinflammation; 2018.14;15(1):263. DOI: 10.1186/s12974-018-1306-2

Mahfud RA, Lyrawati D, Sarwono I. Effect of Alpha Lipoic acid on mda levels and histology of brain in type 1 dm. MNJ (Malang Neurol Journal); 2017. 3(1):23–9. DOI: http://dx.doi.org/10.21776/ub.mnj.2017.003.01.5

da Costa GF, Santos IB, de Bem GF, Cordeiro VSC, da Costa CA, de Carvalho LCRM, et al. The beneficial effect of anthocyanidin-rich vitis vinifera l. grape skin extract on metabolic changes induced by high-fat diet in mice involves antiinflammatory and antioxidant actions. Phyther Res; 2017. 31(10):16211632. DOI: 10.1002/ptr.5898

Kähkönen MP, Hopia AI, Heinonen M. Berry phenolics and their antioxidant activity. J Agric Food Chem; 2001. 49(8):4076–82. DOI: 10.1021/jf010152t

Ahmadi H, Fathi F, Moeini A, Amidi F, Sobhani A. Evaluation of prooxidant-antioxidant balance in in vitro fertilization-conceived mice. Clin Exp Reprod Med; 2018. 45(2):82-87. DOI: 10.5653/cerm.2018.45.2.82

Mirshekar M, Roghani M, Khalili M, Baluchnejadmojarad T. Chronic oral pelargonidin alleviates learning and memory disturbances in streptozotocin diabetic rats. Iran J Pharm Res; 2011. 10(3):569–75. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813041/

Vauzour D. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev; 2012. 914273. DOI: 10.1155/2012/914273

Speciale A, Cimino F, Saija A, Canali R, Virgili F. Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. Genes Nutr; 2014. 9(4):404. DOI: 10.1007/s12263014-0404-8

Wang Y, Zhao L, Lu F, Yang X, Deng Q, Ji B, et al. Retinoprotective effects of bilberry anthocyanins via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in a visible light-induced retinal degeneration model in pigmented rabbits. Molecules; 2015. 20(12):22395–410. DOI: 10.3390/molecules201219785

Krikorian R, Shidler MD, Nash TA, Kalt W, VinqvistTymchuk MR, Shukitt-Hale B, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem; 2010. 58(7):3996–4000. DOI: 10.1021/jf9029332

Murphy T, Dias GP, Thuret S. Effects of diet on brain plasticity in animal and human studies: Mind the gap. Neural Plast; 2014. 2014. DOI: http://dx.doi.org/10.1155/2014/56316

Downloads

Published

2018-12-21

How to Cite

Prabawati, R. K., Ratnawati, R., Rahayu, M., & Prakosa, A. G. (2018). EFFECT ANTHOCYANIN OF PURPLE POTATO GUNUNG KAWI ON MDA LEVELS, EXPRESSION OF CASPASE-3, AND SPATIAL MEMORY FUNCTION ON DIABETIC WISTAR RATS. MNJ (Malang Neurology Journal), 5(1), 34–41. Retrieved from https://mnj.ub.ac.id/index.php/mnj/article/view/355

Issue

Section

Research Article