Cinnamomum burmannii EXTRACT AMELIORATES HIGH GLUCOSE-INDUCED BRAIN APOPTOSIS IN ZEBRAFISH EMBRYOS THROUGH INHIBITION OF PROCASPASE-9 : IN SILICO AND IN VIVO STUDY

Authors

DOI:

https://doi.org/10.21776/ub.mnj.2022.008.02.10

Keywords:

cinnamon, brain apoptosis, zebrafish, molecular docking, procaspase-9

Abstract

Background: Brain is an organ that is prone to oxidative stress and subsequent apoptosis due to high aerobic metabolism and relatively low antioxidants, especially under hyperglycemic condition. Cinnamomum burmanii (CB) is a species that is abundant in Indonesia, therefore it is of special concern for researchers to identify the anti-apoptotic effect of CB. Objective: This study was initiated to determine the effect of CB extract on the inhibition of brain apoptosis in zebrafish embryos exposed to high glucose and to investigate its anti-apoptosis mechanism by molecular docking approach. Methods: Molecular docking was conducted to determine the interaction between several CB extracts main constituents with target protein procaspase-9, compared to control ligand Saxagliptin. Zebrafish embryos were used to assess the effect of 4% glucose exposure and three doses of CB extract treatment (1.25, 5, and 10 µg/ml) on apoptosis in brain region. High-glucose condition in zebrafish embryo was confirmed with overexpression of Phosphoenolpyruvate carboxykinase (PEPCK). Apoptosis was evaluated by performing acridine orange (AO) staining and quantified by ImageJ software. Results: Molecular docking study indicated that main CB compounds, namely epicatechin, displayed stronger molecular interactions with procaspase-9 compared to control ligand Saxagliptin. There were increased numbers of apoptotic cells seen around brain region in glucose-treated group. Meanwhile, supplementation of CB extract at dose of 10 µg/ml resulted in decreased amount of apoptotic cells in brain region. Conclusion: The results suggest that CB extract protects from hyperglycemic-induced apoptosis in zebrafish embryos brain by modulating procaspase-9.

References

Mishra S, Bhadoria AS, Kishore S, Kumar R. Gestational diabetes mellitus 2018 guidelines: An update. J Fam Med Prim care; 2018. 7(6):1169. DOI: 10.4103/jfmpc.jfmpc_178_18

Basu M, Garg V. Maternal hyperglycemia and fetal cardiac development: Clinical impact and underlying mechanisms. Birth defects Res; 2018. 110(20):1504–16. DOI: 10.1002/bdr2.1435

Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int; 2014. DOI: 10.1155/2014/761264

Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell; 2003. 11(2):519–27. DOI: 10.1016/s1097-2765(03)00054-6

Logue SE, Martin SJ. Caspase activation cascades in apoptosis. Biochem Soc Trans; 2008. 36(1):1–9.

DOI: 10.1042/BST0360001

Huber KL. Regulation of caspase-9 by natural and synthetic inhibitors. University of Massachusetts Amherst; 2012. Available from: https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1554&context=open_access_dissertations

Chavda V, Patel V, Patel S. Investigation of neuroprotective potential of anti-diabetic agents in ischemic brain proteomics through in-silico molecular simulation studies; 2021. DOI: 10.33263/BRIAC124.53475362

Singh A, Castillo HA, Brown J, Kaslin J, Dwyer KM, Gibert Y. High glucose levels affect retinal patterning during zebrafish embryogenesis. Sci Rep; 2019. 9(1):1–13. DOI: 10.1038/s41598-019-41009-3

Liang J, Gui Y, Wang W, Gao S, Li J, Song H. Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos. Birth Defects Res Part A Clin Mol Teratol; 2010. 88(6):480–6. DOI: 10.1002/bdra.20654

Xu S, Wang G, Peng W, Xu Y, Zhang Y, Ge Y, et al. Corosolic acid isolated from Eriobotrya japonica leaves reduces glucose level in human hepatocellular carcinoma cells, zebrafish and rats. Sci Rep; 2019. 9(1):1–13. DOI: 10.1038/s41598-019-40934-7

Medagama AB. The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials. Nutr J; 2015. 14(1):1–12. DOI: 10.1186/s12937-015-0098-9

Abdeen A, Abdelkader A, Abdo M, Wareth G, Aboubakr M, Aleya L, et al. Protective effect of cinnamon against acetaminophen-mediated cellular damage and apoptosis in renal tissue. Environ Sci Pollut Res; 2019. 26(1):240–9. DOI: 10.1007/s11356-018-3553-2

Alshahrani S, Ashafaq M, Hussain S, Mohammed M, Sultan M, Jali AM, et al. Renoprotective effects of cinnamon oil against APAP-Induced nephrotoxicity by ameliorating oxidative stress, apoptosis and inflammation in rats. Saudi Pharm J; 2021. 29(2):194–200. DOI: 10.1016/j.jsps.2021.01.002

Xu Q, Chen Z, Zhu B, Li Y, Reddy MB, Liu H, et al. Neuroprotective effects of b-type cinnamon procyanidin oligomers on mpp+-induced apoptosis in a cell culture model of parkinson’s disease. Molecules; 2021. 26(21):6422. DOI: 10.3390/molecules26216422

Elshopakey GE, Elazab ST. Cinnamon aqueous extract attenuates diclofenac sodium and oxytetracycline mediated hepato-renal toxicity and modulates oxidative stress, cell apoptosis, and inflammation in male albino rats. Vet Sci; 2021. 8(1):9. DOI: 10.3390/vetsci8010009

Al-Dhubiab BE. Pharmaceutical applications and phytochemical profile of Cinnamomum burmannii. Pharmacogn Rev; 2012. 6(12):125–31. DOI: 10.4103/0973-7847.99946

Shan B, Cai Y-Z, Brooks JD, Corke H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): Activity against foodborne pathogenic bacteria. J Agric Food Chem; 2007. 55(14):5484–90.

DOI: 10.1021/jf070424d

Muhammad DRA, Tuenter E, Patria GD, Foubert K, Pieters L, Dewettinck K. Phytochemical composition and antioxidant activity of Cinnamomum burmannii Blume extracts and their potential application in white chocolate. Food Chem; 2021. 340:127983. DOI: 10.1016/j.foodchem.2020.127983

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep; 2017. 7(1):1–13. DOI:10.1038/srep42717

Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature; 1999. 399(6736):549–57. DOI: 10.1038/21124

Khotimah H, Al MM. Ikan zebra (Danio rerio) sebagai binatang model pada penelitian biomedis dan cara pemeliharaannya. Sanus Med J; 2020. 1(1):8–13. DOI: 10.22236/sanus.v1i1.5301

Hayati F, Chabib L, Fauzi ITS, Awaluddin R. Effects of pegagan (Centella asiatica L.) ethanolic extract SNEDDS (self-nanoemulsifying drug delivery systems) on the development of zebrafish (Danio rerio) Embryos. J Pharm Bioallied Sci; 2020. 12(4):457. DOI: 10.4103/jpbs.JPBS_297_19

Khotimah H, Yuliyani T, Nuraenah E, Zahara E, Umi Kalsum N. Centella asiatica increased the body length through the modulation of antioxidant in rotenone-induced zebrafish larvae. Biomed Pharmacol J; 2018. 11(2):827–33. DOI: 10.13005/bpj/1438

Elo B, Villano CM, Govorko D, White LA. Larval zebrafish as a model for glucose metabolism: Expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J Mol Endocrinol; 2007. 38(4):433–40. DOI: 10.1677/JME-06-0037

Drewnowska KD, Craig MR, Digiovanni SR, McCarty JM, Moorman AFM, Lamers WH, et al. PEPCK mRNA localization in proximal tubule and gene regulation during metabolic acidosis. J Physiol Pharmacol; 2002. 53(1):3–20. DOI:

Bragato C, Gaudenzi G, Blasevich F, Pavesi G, Maggi L, Giunta M, et al. Zebrafish as a model to investigate dynamin 2-related diseases. Sci Rep; 2016. 6(1):1–13. DOI: 10.1038/srep20466

Wittbrodt JN, Liebel U, Gehrig J. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing. BMC Biotechnol; 2014. 14(1):1–6. DOI: 10.1186/1472-6750-14-36

Tucker B, Lardelli M. A rapid apoptosis assay measuring relative acridine orange fluorescence in zebrafish embryos. Zebrafish; 2007. 4(2):113–6. DOI: 10.1089/zeb.2007.0508

Abaza MSI, Afzal M, Raja’a J, Guleri R. Methylferulate from Tamarix aucheriana inhibits growth and enhances chemosensitivity of human colorectal cancer cells: Possible mechanism of action. BMC Complement Altern Med; 2016. 16(1):1–17. DOI: 10.1186/s12906-016-1358-8

Ballester PJ, Mitchell JBO. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics; 2010. 26(9):1169–75. DOI: 10.1093/bioinformatics/btq112

Mullard A. Re-assessing the rule of 5, two decades on. Nat Rev Drug Discov; 2018. 17(11):777. DOI: 10.1038/nrd.2018.197

Yang LPH. Saxagliptin. Drugs; 2012. 72(2):229–48. DOI: 10.2165/11208160-000000000-00000

Shin HA, Shin YS, Kang SU, Kim JH, Oh Y-T, Park KH, et al. Radioprotective effect of epicatechin in cultured human fibroblasts and zebrafish. J Radiat Res; 2014. 55(1):32–40. DOI: 10.1093/jrr/rrt085

Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z. The effect of diabetes mellitus on apoptosis in hippocampus: Cellular and molecular aspects. Int J Prev Med; 2016. 7. DOI: 10.4103/2008-7802.178531

Zhong F, Liu L, Wei J-L, Hu Z-L, Li L, Wang S, et al. Brain-derived neurotrophic factor precursor in the hippocampus regulates both depressive and anxiety-like behaviors in rats. Front psychiatry; 2019. 9:776. DOI: 10.3389/fpsyt.2018.00776

Lee Y, Yang J. Development of a zebrafish screening model for diabetic retinopathy induced by hyperglycemia: Reproducibility verification in animal model. Biomed Pharmacother; 2021. 135:111201. DOI: 10.1016/j.biopha.2020.111201

Mahfud RA, Lyrawati D, Sarwono I. Effect of Alpha Lipoic acid on mda levels and histology of brain in type 1 dm. Malang Neurol J; 2017. 3(1):23–9. DOI: 10.21776/ub.mnj.2017.003.01.5

Kim E-A, Kang M-C, Lee J-H, Kang N, Lee W, Oh J-Y, et al. Protective effect of marine brown algal polyphenols against oxidative stressed zebrafish with high glucose. RSC Adv; 2015. 5(33):25738–46.

Wang J, Li Y, Lai K, Zhong Q, Demin KA, Kalueff A V, et al. High-glucose/high-cholesterol diet in zebrafish evokes diabetic and affective pathogenesis: The role of peripheral and central inflammation, microglia and apoptosis. Prog Neuro-Psychopharmacology Biol Psychiatry; 2020. 96:109752. DOI: 10.1016/j.pnpbp.2019.109752

Elgawish RAR, Abdelrazek HMA. Effects of lead acetate on testicular function and caspase-3 expression with respect to the protective effect of cinnamon in albino rats. Toxicol Reports; 2014. 1:795–801. DOI: 10.1016/j.toxrep.2014.10.010

Gehrmann W, Elsner M, Lenzen S. Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β‐cells. Diabetes, Obes Metab; 2010. 12:149–58. DOI: 10.1111/j.1463-1326.2010.01265.x

Downloads

Published

2022-07-06

How to Cite

Kalsum, U., Khotimah, H., Firdaus, T., Fukata, E., Sulihah, N. T., Lisabilla, F. A., Permatasari, H. K., & Andarini, S. (2022). Cinnamomum burmannii EXTRACT AMELIORATES HIGH GLUCOSE-INDUCED BRAIN APOPTOSIS IN ZEBRAFISH EMBRYOS THROUGH INHIBITION OF PROCASPASE-9 : IN SILICO AND IN VIVO STUDY. Malang Neurology Journal, 8(2), 122–128. https://doi.org/10.21776/ub.mnj.2022.008.02.10

Issue

Section

Research Article