THE COMBINATION OF HIGH FAT DIET AND MONOSODIUM GLUTAMATE ALTERING ADIPOGENESIS, BRAIN RESISTIN AND SERUM CORTISOL LEVEL IN FEMALE RAT

Authors

  • Aris Widayati Department of Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Dewi Mustika Department of Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Yhusi Karina Riskawati Department of Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Agustin Iskandar Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Nia Kurnianingsih Department of Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia

DOI:

https://doi.org/10.21776/ub.mnj.2022.008.02.8

Keywords:

glutamate, fat diet, inflammation, behavior, BDNF

Abstract

Background: The prevalence of obesity is increasing tremendously worldwide. Obesity is correlated with the consumption of a high-fat diet (HFD) and monosodium glutamate (MSG). Although the effect of MSG or HFD on inflammation has been established, lack of information about the effects of both combination on simultaneous systemic and brain inflammation that can be evaluated from cortisol serum and brain resistin level respectively.

Objectives: This study aimed to investigate the effects of combining HFD and MSG on brain resistin, serum cortisol, lipid profiles, visceral weight, and body weight gain.

Methods: Sixteen adult female rats were randomized into 4 groups consist of standard diet; HFD+MSG 0.05 mg/gBW, HFD+MSG 0.2 mg/gBW and HFD+MSG 0.35 mg/gBW. Lipid profiles were measured using automatic biochemical analyzer. Brain resistin and serum cortisol level were determined using enzyme-linked immunoassay.

Results: The groups of HFD+MSG significantly have higher level of brain resistin (p<0.003), serum cortisol (p<0.01), total cholesterol (p<0.003) and visceral fat weight (p<0.05) than control group.

Conclusion: The combination of HFD, and MSG generates obesity that led to systemic-brain alteration on inflammation.  Further study is necessary to evaluate further the functional impact of both combinations on behavioral profiles.

References

Bautista RJH, Mahmoud AM, Königsberg M, and Guerrero NELD. Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed. Pharmacother; 2019. 111:503–516. DOI: 10.1016/j.biopha.2018.12.108

Blüher M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol; 2019. 15(5): 288–298. DOI: 10.1038/s41574-019-0176-8

Endalifer ML and Diress G. Epidemiology, Predisposing Factors, Biomarkers, and Prevention Mechanism of Obesity: A Systematic Review. J. Obes; 2020. 1–8. DOI: 10.1155/2020/6134362

Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, Gortmaker SL. The global obesity pandemic: Shaped by global drivers and local environments. Lancet; 2011. 378(August 27): 804–814. DOI:10.1016/S0140-6736(11)60813-1

Hsu M, Chen Y, Sheen J, and Huang L. Maternal obesity programs offspring development and resveratrol potentially reprograms the effects of maternal obesity. Int. J. Environ. Res. Public Health; 2020. 17(1610):1–15. DOI:10.3390/ijerph17051610

Guldan GS. Asian children’s obesogenic diets-Time to change this part of the energy balance equation?,Res. Sport. Med; 2010. 18:5–15.

DOI: 10.1080/15438620903413214.

Freeman LR, Haley-Zitlin V, Rosenberger DS, Granholm AL, Freeman V, Haley-Zitlin D, Rosenberger, and Granholm A. Damaging effects of a high-fat diet to the brain and cognition: A review of proposed mechanisms. Nutr Neurosci; 2014. 17(6):241–251.

DOI: 10.1179/1476830513Y.0000000092.

Henry CJ, Kaur B, and Quek RYC. Are Asian foods as ‘fattening’ as western-styled fast foods? Eur. J. Clin. Nutr; 2020. 74:348–350. DOI: 10.1038/s41430-019-0537-3

Kazmi Z, Fatima I, Perveen S and Malik SS. Monosodium glutamate: Review on clinical reports. Int. J. Food Prop; 2017. 20(S2): S1807–S1815.

DOI: 10.1080/10942912.2017.1295260

Zanfirescu A, Ungurianu A, Tsatsakis AM, Kouretas D, Veskoukis A, Tsoukalas D, Engin AB, Aschner M, Margina D. A review of the alleged health hazards of monosodium glutamate. Copmr Rev Food Sci Saf; 2019. 18(4):1111–1134.

Sharma S, Zhuang Y and Gomez-pinilla FS. High-fat diet transition reduces brain plasticity and behaviour. Sci. Rep; 2012. 2(431):1–8. DOI:10.1038/srep00431

Vagena E, Ryu JK, Baeza-Raja B, Walsh NM, Syme C, Day JP, Houslay MD and Baillie GS. A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl. Psychiatry; 2019. 9(141):1–15. DOI: 10.1038/s41398-019-0470-1

Collison KS, Makhoul NJ, Inglis A, Al-Johi M, Zaidi MZ, Maqbool Z, Saleh SM, Bakheet R, Mondreal R, Al-Rabiah R, Shoukri M, Milgram NW, Al-Mohanna FA. Dietary trans-fat combined with monosodium glutamate induces dyslipidemia and impairs spatial memory. Physiol. Behav; 2010. 99:334–342.

Kurnianingsih N, Ratnawati R, Nazwar TA, Ali M and Fatchiyah F. The behavioral effect of anthocyanin from purple sweet potatoes on prenatally stressed offspring mice. Syst. Rev. Pharm; 2020. 11(10):482–490. DOI:10.31838/srp.2020.10.72

Handayani D, Chen J, Meyer BJ and Huang XF (2011) Dietary Shiitake Mushroom (Lentinus edodes) Prevents Fat Deposition and Lowers Triglyceride in Rats Fed a High-Fat Diet. J. Obes; 2011. 2011:1–7. DOI: 10.1155/2011/258051

Seo HJ, Ham HD, Jin HY, Lee WY, Hwang HS, Park SA, Kim YS, Choi SC, Lee S, Oh KJ, Kim BS, Park BR, Lee MY. Chronic administration of monosodium glutamate under chronic variable stress impaired hypothalamic-pituitary-adrenal axis function in rats. Korean J. Physiol. Pharmacol; 2010. 14:213–221.

Nuraida L, Madaniyah S, Andarwulan N, Briawan D, Hanifah NL and Zulaikhah. Free Glutamate Intake from Foods Among Adults: Case study in Bogor and Jakarta. J. Mutu Pangan; 2014. 1(2):100–109.

Heriansyah T. Pengaruh Berbagai Durasi Pemberian Diet Tinggi Lemak Terhadap Profil Lipid Tikus Putih (Rattus Novergicus Strain Wistar) Jantan.J. Kedokt. Syiah Kuala; 2013. 3:144–150.

Donegà S and Tongiorgi E. Detecting BDNF Protein Forms by ELISA, Western Blot, and Immunofluorescence. Neuromethods; 2019. 143:89–103. DOI: 10.1007/7657_2018_13

Fatchiyah F, Raharjo SJ and Dewi, FRP. Virtual selectivity peptides of CSN1S2 protein of local goat ethawah breeds milk modulate biological mechanism of calmodulin. Int. J. Pharma Bio Sci; 2015. 6(2):B707–B718

Wahyuningsih D, Elyani H, Damayanti SD, Yahya A and Fadli MZ. Red Yeast Rice Protects Hepatocytes conditions of Rats Receiving High Fat Diet. J. Trop. Life Sci; 2019. 9(3):171–178.

Polacchini A, Metelli G, Francavilla R, Baj G, Florean M, Mascaretti LG and Tongiorg E. A method for reproducible measurements of serum BDNF: Comparison of the performance of six commercial assays, Sci. Rep; 2015. 5(December):1–10.

Ibero-Baraibar I, Abete I, Navas-Carretero S, Massis-Zaid A, Martinez JA and Zulet MA. Oxidised LDL levels decreases after the consumption of ready-to-eat meals supplemented with cocoa extract within a hypocaloric diet. Nutr. Metab. Cardiovasc. Dis; 2014. 24: 416–422. DOI: 10.1016/j.numecd.2013.09.017

Haddad-Tóvolli R, Dragano NRV, Ramalho AFS and Velloso LA. Development and function of the blood-brain barrier in the context of metabolic control.Front. Neurosci; 2017. 11(224):1–12.

Smith QR. Transport of glutamate and other amino acids at the blood-brain barrier. J. Nutr; 2000. 130(4 SUPPL):1016–1022. DOI: 10.1093/jn/130.4.1016s

Elefteriou F, Takeda S, Liu X, Armstrong D and Karsenty G. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass. Endocrinology; 2003. 144(9): 3842–3847.

Joly-Amado A, Cansell C, Denis RGP, Delbes AS, Castel J, Martinez S, Luquet S. The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract. Res. Clin. Endocrinol. Metab; 2014. 28:725–737. DOI: 10.1016/j.beem.2014.03.003

Stricker-Krongrad A and Beck B. Up-regulation of neuropeptide Y receptors in the hypothalamus of monosodium glutamate-lesioned Sprague-Dawley rats. Nutr. Neurosci; 2004. 7(4) :241–245.

Ribeiro EB. Studying the central control of food intake and obesity in rats. Revi Nutr. Campinas; 2009. 22(1):163–171. DOI: 10.1590/s1415-52732009000100015

Acquarone E, Monacelli F, Borghi R, Nencioni A and Odetti P. Resistin: A reappraisal. Mech. Ageing Dev; 2019. 178(January):46–63.

Niaz K, Zaplatic E and Spoor J. Extensive use of monosodium glutamate: A threat to public health?. EXCLI J; 2018. 17:273–278.

DOI: 10.17179/excli2018-1092

Salameh TS. Mortell WG, Logsdon AF, Butterfield DA, Banks WA. Disruption of the hippocampal and hypothalamic blood-brain barrier in a diet-induced obese model of type II diabetes: Prevention and treatment by the mitochondrial carbonic anhydrase inhibitor, topiramate. Fluids Barriers CNS; 2019. 16(1):1–17. DOI: 10.1186/s12987-018-0121-6

Parimisetty A, Dorsemans AC, Awada R, Ravanan P, Diotel N, Lefebvre d'Hellencourt C. Secret talk between adipose tissue and central nervous system via secreted factors-an emerging frontier in the neurodegenerative research. J. Neuroinflammation; 2016. 13(1):1–13. DOI: 10.1186/s12974-016-0530-x

Jin YJ, Cao PJ, Bian WH, Li ME, Zhou R, Zhang LY and Yang MZ. BDNF levels in adipose tissue and hypothalamus were reduced in mice with MSG-induced obesity BDNF levels in adipose tissue and hypothalamus were reduced in mice with MSG-induced obesity. Nutr. Neurosci; 2015. 18(8):376–382.

Saunders NR, Liddelow SA and Dziegielewska KM. Barrier mechanisms in the developing brain. Front. Pharmacol; 2012. 3(46):1–18.

Dong XX, Wang Y and Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin; 2009. 30(4):379–387.

DOI: 10.1038/aps.2009.24

Wilson CB, McLaughlin LB, Nair A, Ebenezer PJ, Dange R, and Francis J. Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PLoS One; 2013. 8(10):1–10.

Tan BL and Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients; 2019. 11(2579):1–22.

Raghuraman G, Zuniga MC, Yuan H, and Zhou W. PKCε mediates resistin-induced NADPH oxidase activation and inflammation leading to smooth muscle cell dysfunction and intimal hyperplasia. Atherosclerosis; 2016. 253:29–37.

Downloads

Published

2022-07-06

How to Cite

Widayati, A., Mustika, D., Riskawati, Y. K., Iskandar, A., & Kurnianingsih, N. (2022). THE COMBINATION OF HIGH FAT DIET AND MONOSODIUM GLUTAMATE ALTERING ADIPOGENESIS, BRAIN RESISTIN AND SERUM CORTISOL LEVEL IN FEMALE RAT. MNJ (Malang Neurology Journal), 8(2), 113–116. https://doi.org/10.21776/ub.mnj.2022.008.02.8

Issue

Section

Research Article