POTENTIAL OF ANTHOCYANIN BASED POLY (METHYL METHACRYLATE) NANOPARTICLES SPECIFIC ACTIVATED MICROGLIA IN MANAGEMENT INFLAMMATORY PAIN ON HERNIATED NUCLEUS PULPOSUS: A LITERATURE REVIEW

I Putu Eka Widyadharma, Agung Bagus Sista Satyarsa, Feliani Sanjaya, Ni Made Gitari, I Wayan Niryana, Thomas Eko Purwata, I Made Jawi, Dewa Ngurah Suprapta, AA Raka Sudewi
  MNJ, pp. 40-47  

Abstract


Pain is an unpleasant sensory and emotional experience that can affect the quality of life and leads to decreased productivity in patients. Low back pain (LBP) is one of the significant causes of disability worldwide with lifelong incidence. The purpose of this literature review describes the potential of anthocyanin-based Poly (Methyl Methacrylate) (PMMA)   nanoparticles as the management of inflammatory pain in the Hernia Nucleus Pulposus (HNP ). The method used is a literature study by entering the keyword. Of the 77 journals reviewed, 47 journals were found by the topic and used as a reference for this work. The anthocyanin-based PMMA nanoparticles act as anti-nociceptors by inhibiting microglia that produce inflammatory mediators in HNP. Poly (Methyl Methacrylate) nanoparticles have specific targets in microglia. Anthocyanins have the effect of inhibiting inflammatory pain through many destinations. Anthocyanin inhibits the synthesis of nitric oxide (NO ) and prostaglandin E2 (PGE 2) and inhibits the activation of p38 MAPK and NF-kB pathways that express TNF-α and IL-1β genes as anti-nociceptive. The anthocyanin-based PMMA nanoparticles have potential as a novel therapy for inflammatory pain in HNP. There has been no research between these modalities. Therefore, further research is needed to find out the exact potential of anthocyanin-based PMMA nanoparticles.


Keywords


Anti-nociceptive; Anthocyanin; Hernia Nucleus Pulposus; and Poly (Methyl Methacrylate) Nanoparticles

Full Text:

PDF

References


Roselina E, Arifin S, Gidion H. Manajemen nyeri pasien rawat jalan pada kasus hernia nukleus pulposus melalui core stability. Jurnal Vokasi Indonesia; 2016. 2:14-21.

Schroeder GD, Guyre CA, Vaccaro AR. The epidemiology and pathophysiology of lumbar disc herniations. InSeminars in Spine Surgery; 2016. 28:2-7. DOI: 10.1053/j.semss.2015.08.003

Hooten WM, Cohen SP. Clinically focused review for primary care. Mayo Clin Proc; 2015. 90:1699–718. DOI: 10.1016/j.mayocp.2015.10.009

Deyo RA, Mirza SK. Herniated lumbar intervertebral Disk. N Engl J Med; 2016. 374:1763–72. DOI: 10.1056/NEJMcp1512658

Lee SH, Jeong YJ, Kim NH. The factors associated with the successful outcomes of percutaneous disc decompression in patients with lumbar herniated nucleus pulposus. Ann Rehabil Med; 2015. 39:735–44. DOI: 10.5535/arm.2015.39.5.735

Toda S, Sakai A, Ikeda Y, Sakamoto A, Suzuki H. A local anesthetic, ropivacaine, suppresses activated microglia via a nerve growth factor- dependent mechanism and astrocytes via a nerve growth factor-independent mechanism in neuropathic pain. Mol Brain; 2011. 7:1–11. DOI: 10.1186%2F1744-8069-7-2

Kang S, Roh D, Choi J, Ryu Y, Lee J. Repetitive treatment with diluted bee venom attenuates the induction of below-level neuropathic pain behaviors in a rat spinal cord injury model. Toxins (Basel); 2015. 7:2571–85. DOI: 10.3390/toxins7072571

Ge Y, Wu F, Sun X, Xiang Z, Yang L, Huang S, et al. Intrathecal infusion of hydrogen-rich normal saline attenuates neuropathic pain via inhibition of activation of spinal astrocytes and microglia in rats; 2014. 9:1-12. DOI: 10.1371/journal.pone.0097436

Xue H, Yao Y, Wang X, Zhang F, Jiang X, Liu J. Interleukin-21 is associated with the pathogenesis of lumbar disc herniation. Iran J Allergy Asthma Immunol; 2015. 14:509–18. DOI: 10.1186/s13018-016-0343-8

Tsuda M. Microglia in the spinal cord and neuropathic pain. J Diabetes Investig; 2016. 7:17–26. DOI: 10.1111/jdi.12379

Cho HK, Kang JH, Kim SY, Choi MJ, Hwang SJ, Cho YW et al. Changes in neuroglial activity in multiple spinal segments after caudal epidural pulsed radiofrequency in a rat model of lumbar disc herniation. Pain Physician; 2016. 19:E1197-209. PMID: 27906951

Zhuo M, Wu G, Wu L. Neuronal and microglial mechanisms of neuropathic pain. Mol Brain; 2011. 4:1–12. DOI: 10.1186/1756-6606-4-31

Jordan J, Konstantinou K, O'Dowd J. Herniated lumbar disc. BMJ Clin Evid; 2011. 2011:1–65. PMID: 21711958

Dijk BV, Potier E, Dijk MV, Langelaan M, Papen-botterhuis N, Ito K. Reduced tonicity stimulates an inflammatory response in nucleus pulposus tissue that can be limited by a cox-2-specific inhibitor. J Orthop Res; 2015. Nov; 1724–31. DOI: 10.1002/jor.22946.

Yil H, Kiml M, Backl S, Eun J, Nal H. A novel rat forelimb model of neuropathic pain produced by partial injury of the median and ulnar nerves. Eur J Pain; 2011. 15:459–66. DOI: 10.1016/j.ejpain.2010.09.014

Dworkin RH, Connor ABO, Backonja M, Farrar JT, Finnerup NB, Jensen TS, et al. Pharmacologic management of neuropathic pain: Evidence-based recommendations. Pain; 2007. 132:237–51. DOI: 10.1016/j.pain.2007.08.033

Liu K, Chen Z, Luo XW, Song GQ, Wang P, Li XD, et al. Determination of the potential of induced pluripotent stem cells to differentiate into mouse nucleus pulposus cells in vitro. Genet Mol Res; 2015. 14:12394–405. DOI: 10.4238/2015.October.16.6

Simonyi A, Chen Z, Jiang J, Zong Y, Chuang DY, Gu Z, et al. Inhibition of microglial activation by elderberry extracts and its phenolic components. Life sciences; 2015. 128:30-8. DOI: 10.1016/j.lfs.2015.01.037

Jeong JW, Lee WS, Shin SC, Kim GY, Choi BT, Choi YH. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in bv2 microglial cells by suppressing the NF- κ B and Akt / MAPKs signaling pathways. Int J Mol Sci; 2013. 14:1502–15. DOI: 10.3390/ijms14011502

Ordikhani F, Sheth S, Zustiak SP. Polymeric particle-mediated molecular therapies to treat spinal cord injury. International journal of pharmaceutics; 2017. 516:71-81. DOI: 10.1016/j.ijpharm.2016.11.021

Omarker K, Myers RR. Pathogenesis of sciatic pain: role of herniated nucleus pulposus and deformation of spinal nerve root and dorsal root ganglion. Pain; 1998. 78:99-105. DOI: 10.1016/S0304-3959(98)00119-5

Li J, Nie L, Zhao Y, Zhang Y, Wang X, Wang S, et al. IL-17 mediates inflammatory reactions via p38/c-Fos and JNK/c-Jun activation in an AP-1-dependent manner in human nucleus pulposus cells. Journal of translational medicine. J Transl Med; 2016. 14:1–10. DOI: 10.1186/s12967-016-0833-9

Souza Grava AL, Ferrari LF, Defino HLA. Cytokine inhibition and time-related influence of inflammatory stimuli on the hyperalgesia induced by the nucleus pulposus. Eur Spine J; 2012. 21:537–45. DOI: 10.1007/s00586-011-2027-8

Hu CY, Zhao Y-T. Analgesic effects of naringenin in rats with spinal nerve ligation-induced neuropathic pain. Biomed reports; 2014. 2:569–73. DOI: 10.3892/br.2014.267

Finnerup NB, Sindrup SH, Jensen TS. Chronic neuropathic pain: mechanisms, drug targets and measurement. Fundam Clin Pharmacol; 2007. 21:129–36. DOI: 10.1111/j.1472-8206.2007.00474.x

Craigie E, Birch RE, Unwin RJ, Wildman SS, Ecelbarger CM, Nicke A, et al. The relationship between P2X4 and P2X7: a physiologically important interaction? Front Physiol; 2013. 4:1–6. DOI: 10.3389/fphys.2013.00216

Gosselin RD, Suter MR, Ji RR, Decosterd I. Glial cells and chronic pain. The Neuroscientist; 2010. Oct;16(5):519-31. DOI: 10.1177%2F1073858409360822

Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev; 2007. 87:659–797. DOI: 10.1152/physrev.00043.2006

Ulmann L, Hatcher JP, Hughes JP, Green PJ, Buell GN, Reeve AJ, et al. Up-regulation of p2x 4 receptors in spinal microglia after peripheral nerve injury mediates bdnf release and neuropathic pain. J Neurosci; 2008. 28:11263–8. DOI: 10.1523/JNEUROSCI.2308-08.2008

Beggs S, Trang T, Salter MW. P2X4R+ microglia drive neuropathic pain. Nat Neurosci; 2012. 15:1068–74. DOI: 10.1038/nn.3155

Adnyana IM, Sudewi R, Samatra P, Suprapta S. Balinese cultivar of purple sweet potato improved neurological score and bdnf and reduced caspase-independent apoptosis among wistar rats with ischemic stroke. Open access Macedonian journal of medical sciences; 2019. 7:38-44. DOI: 10.3889%2Foamjms.2019.019

Moriya C, Hosoya T, Agawa S, Sugiyama Y, Kozone I, Shin-ya K, et al. New acylated anthocyanins from purple yam and their antioxidant activity. Bioscience, biotechnology, and biochemistry; 2015. 79:1484-92. DOI: 10.1080/09168451.2015.1027652

Prabawati RK, Ratnawati R, Rahayu M, Prakosa AG. Effect anthocyanin of purple potato gunung kawi on mda levels, expression of caspase-3, and spatial memory function on diabetic wistar rats. Malang Neurol Journal; 2019. 5:34–41. DOI: 10.21776/ub.mnj.2019.005.01.6

Riaz M, Zia-Ul-Haq M, Saad B. Anthocyanins and human health: biomolecular and therapeutic aspects. Switzerland: Springer; 2016.

Mazza GJ. Anthocyanins and heart health. Ann Ist Super Sanita; 2007:369–74. PMID: 18209270

Li A, Xiao R, He S, An X, He Y, Wang C, et al. Research advances of purple sweet potato anthocyanins: extraction, identification, stability, bioactivity, application, and biotransformation. Molecules; 2019. 24:1-21. DOI: 10.3390/molecules24213816

Jawi IM, Suprapta DN, Sutirtayasa I. Efek antioksidan ekstrak umbi ubi jalar ungu (ipomoiea batatas l) terhadap hati setelah aktivitas fisik maksimal dengan melihat kadar ast dan alt darah pada mencit. Dexa Media; 2007. 20(3).

Steed L, Truong V. Anthocyanin content, antioxidant activity, and selected physical properties of flowable purple-fleshed sweet potato purees. J Food Sci; 2008. 73:S215-21. DOI: 10.1111/j.1750-3841.2008.00774.x

Poulose SM, Fisher DR, Larson J, Bielinski DF, Rimando AM, Carey AN, et al. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. Journal of Agricultural and Food Chemistry; 2012. 60:1084-93. DOI: 10.1021/jf203989k

Zeng C, Hossieny N, Zhang C, Wang B. Synthesis and processing of PMMA carbon nanotube nanocomposite foams. Polymer; 2010. 51:655-64. DOI: 10.1016/j.polymer.2009.12.032

Satyarsa AB. Potential effects of alkaloid vindolicine substances in tapak dara leafs (catharanthus roseus (l.) G. Don) in reducing blood glucose levels. Journal of Medicine and Health; 2019. Aug;2:1009-19. 30(4):13–4. DOI: 10.28932/jmh.v2i4.1057

Bognar E, Sarszegi Z, Szabo A, Debreceni B, Kalman N, Tucsek Z, et al. Antioxidant and anti-inflammatory effects in raw264. 7 Macrophages of Malvidin, a Major Red Wine Polyphenol. PLoS One; 2013. 8:1-11. DOI: 10.1371%2Fjournal.pone.0065355

Lamsihar P, Yaputra F, Barus JF, Widyadharma IP. The role of 5-lipoxygenase in pathophysiology and management of neuropathic pain. International Journal of Medical Reviews and Case Reports; 2018. 2:58-61: DOI: 10.5455/IJMRCR

Ikeda H, Kiritoshi T, Murase K. Contribution of microglia and astrocytes to the central sensitization, inflammatory and neuropathic pain in the juvenile rat. Mol Pain; 2012. 8:1–11. DOI: 10.1186%2F1744-8069-8-43

Nefzger M, Kreuter J, Liehl E, Czok R. Distribution and elimination of polymethyl methacrylate; 1984. 73:1309-11. DOI: 10.1002/jps.2600730934

Schoener CA, Hutson HN, Peppas NA. pH-Responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics; 2012. 61:874-9. DOI: 10.1002/pi.4219

Bettencourt A. Poly (methyl methacrylate) particulate carriers in drug delivery; 2012. 29:353–67. DOI: 10.3109/02652048.2011.651500

Jiang T, Mao Y, Sui L, Yang N, Li S, Zhu Z, et al. Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food chemistry; 2019. 274:460-70. DOI: 10.1016/j.foodchem.2018.07.141


Refbacks

  • There are currently no refbacks.