AROMATASE AND NEUROREGENERATION

Authors

  • Zulvikar Syambani Ulhaq Graduate School of Science and Technology, Kumamoto University

Keywords:

Aromatase, regeneration, teleost

Abstract

Aromatase (cyp19a1) is a converting enzyme for estrogen biosynthesis. A single gene of cyp19a1 identified in mammals and specific promoter differentially regulates E2 produce in the brain.
Interestingly, teleost fish having two isoforms of cyp19a1, cyp19a1a and cy19a1b, encoding ovarian and brain aromatase, respectively. In addition, teleost fish are characterized by having highly aromatase activity and neuroregenerative response. In contrast with fish, neuroregeneration process is limited in mammals. Therefore, understanding molecular mechanism of estradiol signaling in neural injury in fish may give a new insight for the development of novel treatment in mammals, particularly in neurodegenerative diseases. Here, the author briefly reviews and discusses the potential role of neural estrogen for regeneration process.

References

Garringer JA, Niyonkuru C, McCullough EH, Loucks T, Dixon CE, Conley YP, Berga S, Wagner AK. Impact of aromatase genetic variation on hormone levels and global outcome after severe TBI. J Neurotrauma; 2013.30(16):1415-25. DOI: 10.1089/neu.2012.2565

Findlay JK, Liew SH, Simpson ER, Korach KS. Estrogen signaling in the regulation of female reproductive functions. Handb Exp Pharmacol; 2010.198:29-35. DOI: 10.1007/978-3-642-02062-9_2

Gonzales KL, Quadros-Mennella P, Tetel MJ, Wagner CK. Anatomically-specific actions of oestrogen receptor in the developing female rat brain: effects of oestradiol and selective oestrogen receptor modulators on progestin receptor expression. J Neuroendocrinol; 2012.24(2):285-91. DOI: 10.1111/j.13652826.2011.02232.x

Wilson ME, Westberry JM, Trout AL. Estrogen receptor-alpha gene expression in the cortex: sex differences during development and in adulthood. Horm Behav; 2011.59(3):353-7. DOI: 10.1016/j.yhbeh.2010.08.004

Yamazaki T, Yamamoto M, Ishihara Y, Komatsu S, Munetsuna E, Onizaki M, Ishida A, Kawato S, Mukuda T. De novo synthesized estradiol protects against methylmercury-induced neurotoxicity in cultured rat hippocampal slices. PLoS One; 2013.8(2):e55559. DOI: 10.1371/journal.pone.0055559

Bakker J, Honda S, Harada N, Balthazart J. The aromatase knockout (ArKO) mouse provides new evidence that estrogens are required for the development of the female brain. Ann N Y Acad Sci; 2003.1007:251-62. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14993058

Kishida M, Callard GV. Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocrinology; 2001.142(2):740-50. DOI: 10.1210/endo.142.2.7928

Zupanc GK. Adult neurogenesis and neuronal regeneration in the brain of teleost fish. J Physiol Paris; 2008.102(4-6):357-73. DOI: 10.1016/j.jphysparis.2008.10.007

Ulhaq ZS, Kishida M. Brain aromatase modulates serotonergic neuron by regulating serotonin levels in zebrafish embryos and larvae. Front. Endocrinol; 2018.9:230. DOI: 10.3389/fendo.2018.00230

Yague JG, Muñoz A, de Monasterio-Schrader P, Defelipe J, Garcia-Segura LM, Azcoitia I. Aromatase expression in the human temporal cortex. Neuroscience; 2006.138(2):389-401. DOI: 10.1016/j.neuroscience.2005.11.054

Menuet A, Pellegrini E, Brion F, Gueguen MM, Anglade I, Pakdel F, Kah O. Expression and estrogen-dependent regulation of the zebrafish brain aromatase gene. J Comp Neurol; 2005. 485(4):304-20

Garcia-Segura LM, Wozniak A, Azcoitia I, Rodriguez JR, Hutchison RE, Hutchison JB. Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience; 1999.89:567–578. DOI: 10.1016/S0306-4522(98)00340-6

Duncan KA, Saldanha CJ. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain. J Neuroinflammation; 2011.8:81. DOI: 10.1186/1742-2094-8-81

Gatson JW, Simpkins JW, Yi KD, Idris AH, Minei JP, Wigginton JG. Aromatase is increased in astrocytes in the presence of elevated pressure. Endocrinology; 2011.152(1):207-13. DOI: 10.1210/en.2010-0724

Jeng SR, Yueh WS, Pen YT, Gueguen MM, Pasquier J, Dufour S, Chang CF, Kah O. Expression of aromatase in radial glial cells in the brain of the Japanese eel provides insight into the evolution of the cyp191a gene in Actinopterygians. PLoS One; 2012.7(9):e44750. DOI: 10.1371/journal.pone.0044750

Diotel N, Le Page Y, Mouriec K, Tong SK, Pellegrini E, Vaillant C, Anglade I, Brion F, Pakdel F, Chung BC, Kah O. Aromatase in the brain of teleost fish: expression, regulation and putative functions. Front Neuroendocrinol; 2010.31(2):172-92. DOI: 10.1016/j.yfrne.2010.01.003

Zhao Y, Nichols JE, Valdez R, Mendelson CR, Simpson ER. Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Mol Endocrinol; 1996.10(11):1350-7. DOI: 10.1210/mend.10.11.8923461

Duncan KA, Saldanha CJ. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain. J Neuroinflammation; 2011.8:81. DOI: 10.1186/1742-2094-8-81

Li D, Liu N, Zhao HH, Zhang X, Kawano H, Liu L, Zhao L, Li HP. Interactions between Sirt1 and MAPKs regulate astrocyte activation induced by brain injury in vitro and in vivo. J Neuroinflammation; 2017.14(1):67. DOI: 10.1186/s12974-017-0841-6

Dong F, Zhang Q, Kong W, Chen J, Ma J, Wang L, Wang Y, Liu Y, Li Y, Wen J. Regulation of endometrial cell proliferation by estrogen-induced BDNF signaling pathway. Gynecol Endocrinol; 2017.33(6):485-489. DOI: 10.1080/09513590.2017.1295439

Tuvikene J, Pruunsild P, Orav E, Esvald EE, Timmusk T. AP-1 Transcription Factors Mediate BDNFPositive Feedback Loop in Cortical Neurons. J Neurosci; 2016.36(4):1290-305. DOI: 10.1523/JNEUROSCI.3360-15.2016

Pandey DP, Lappano R, Albanito L, Madeo A, Maggiolini M, Picard D. Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J; 2009.28(5):523-32. DOI: 10.1038/emboj.2008.304

Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DY, Poss KD. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science; 2016.354(6312):630-634. DOI: 10.1126/science.aaf2679

Sun C, Liu Y, Liu Y, Zhao M, Zhai J, Hao P, Wang Y, Ji Y. Characterization of aromatase expression in the spinal cord of an animal model of familial ALS. Brain Res Bull; 2017.6;132:180-189. DOI: 10.1016/j.brainresbull.2017.05.016

Sengelaub DR, Han Q, Liu NK, Maczuga MA, Szalavari V, Valencia SA, Xu XM. Protective effects of estradiol and dihydrotestosterone following spinal cord injury. J Neurotrauma; 2018.35(6):825841. DOI: 10.1089/neu.2017.5329

Sribnick EA, Samantaray S, Das A, Smith J, Matzelle DD, Ray SK, Banik NL. Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res; 2010.88(8):1738-50. DOI: 10.1002/jnr.22337

Downloads

Published

2019-01-02

How to Cite

Ulhaq, Z. S. (2019). AROMATASE AND NEUROREGENERATION. MNJ (Malang Neurology Journal), 5(1), 48–50. Retrieved from https://mnj.ub.ac.id/index.php/mnj/article/view/374

Issue

Section

Short Communication