EFFECT ANTHOCYANIN OF PURPLE POTATO GUNUNG KAWI ON MDA LEVELS, EXPRESSION OF CASPASE-3, AND SPATIAL MEMORY FUNCTION ON DIABETIC WISTAR RATS

Authors

  • Risma Karlina Prabawati Department of Neurology Faculty of Medicine Brawijaya University, Malang
  • Retty Ratnawati Department of Physiology Faculty of Medicine Brawijaya University, Malang
  • Masruroh Rahayu Department of Neurology Faculty of Medicine Brawijaya University, Malang
  • Ardani Galih Prakosa Department of Physiology Faculty of Medicine Brawijaya University, Malang

Keywords:

Anthocyanins, hyperglycemia, MDA, caspase-3, spatial memory function

Abstract

Background: Hyperglycemia condition will decline cognitive function. No basic therapy has been 2 found for this. Purple potato anthocyanins are useful as anti-inflammatory, antioxidant, neuroprotectant, and antidiabetic.
Objective: Evaluate effect of purple potato’s anthocyanins on MDA levels, brain’s caspase-3 expressiom, and spatial memory function in diabetic model of Wistar rats.
Methods: This is an experimental study using diabetic model rats. The sample was divided into negative and positive control, anthocyanin dose of 10 mg/kg, 20 mg/kg, and 80 mg/kg groups. MDA levels were measured using spectrophotometer, caspase-3 expression with immunohistochemistry, and spatial memory function using Morris water maze test.
Results: Tukey test showed that anthocyanin 10, 20, and 80 mg/kg lowering MDA levels, caspase-3 expression, and Morris water maze’s travel time compared to control positive (p = 0.000). But anthocyanin 80 mg/kg make a significant increase on these three variabels compared to 10 and 20mg/kg groups (p = 0.010). Pearson test showed that there no correlation between anthocyanin’s dose, MDA levels, caspase-3 expression, and Morris water maze test.
Conclusion: Anthocyanin doses 10 and 20 mg/kg lowering MDA levels and caspase-3 expression, also improves spatial memory function on diabetic model of Wistar rats.

References

Lin JD, Hseih CH, Lian WC, Pei D, Liang YJ, Chen YL. Metabolic syndrome in drug-naïve Chinese patients with insulin-sensitive and insulin-resistant type 2 diabetes. Ann Saudi Med; 2016. 36(3):203–9. DOI: 10.5144/0256-4947.2016.203

Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus - Present and future perspectives. Nat Rev Endocrinol; 2012. 8(4):228–36. DOI: http://dx.doi.org/10.1038/nrendo.2011.183

Centers for disease control and prevention c. national diabetes statistics report: estimates of diabetes and its burden in the united states. atlanta, ga: centers for disease control and prevention; 2017. US Dep Heal Hum Serv; 2017. (Cdc):2009–12. Available from: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf

Idris H, Hasyim H, Utama F. Analysis of diabetes mellitus determinants in indonesia: a study from the indonesian basic health research 2013. Acta Med Indones; 2017. 49(4):291–8. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29348378

Yonguc GN, Dodurga Y, Adiguzel E, Gundogdu G, Kucukatay V, Ozbal S, et al. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene; 2015. 555(2):119–26. DOI: http://dx.doi.org/10.1016/j.gene.2014.10.052

Cai Z, Yan Y, Wang Y. Minocycline alleviates betaamyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder. Clin Interv Aging; 2013. 8:1089–95. DOI https://doi.org/10.2147/CIA.S46536

Gutierres JM, Carvalho FB, Schetinger MRC, Marisco P, Agostinho P, Rodrigues M, et al. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer’s t ype. Life Sci; 2014. 96(1–2):7–17. DOI: http://dx.doi.org/10.1016/j.lfs.2013.11.014

Zhang X, Xu L, He D, Ling S. Endoplasmic reticulum stress-mediated hippocampal neuron apoptosis involved in diabetic cognitive impairment. Biomed Res Int; 2013. 2013. DOI: http://dx.doi.org/10.1155/2013/924327

Yoshida K, Mori M, Kondo T. Blue flower color development by anthocyanins: From chemical structure to cell physiology. Nat Prod Rep; 2009. 26(7):884–915. DOI: 10.1039/b800165k

Min B, McClung AM, Chen MH. Phytochemicals and antioxidant capacities in rice brans of different color. J Food Sci; 2011. 76(1):117–26. DOI: 10.1111/j.17503841.2010.01929.x

Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF. Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathol; 2010. 20(3):598–612. DOI: 10.1111/j.1750-3639.2009.00339

Rahman A, Rao MS, Khan KM. Intraventricular infusion of quinolinic acid impairs spatial learning and memory in young rats: A novel mechanism of leadinduced neurotoxicity. J Neuroinflammation; 2018.14;15(1):263. DOI: 10.1186/s12974-018-1306-2

Mahfud RA, Lyrawati D, Sarwono I. Effect of Alpha Lipoic acid on mda levels and histology of brain in type 1 dm. MNJ (Malang Neurol Journal); 2017. 3(1):23–9. DOI: http://dx.doi.org/10.21776/ub.mnj.2017.003.01.5

da Costa GF, Santos IB, de Bem GF, Cordeiro VSC, da Costa CA, de Carvalho LCRM, et al. The beneficial effect of anthocyanidin-rich vitis vinifera l. grape skin extract on metabolic changes induced by high-fat diet in mice involves antiinflammatory and antioxidant actions. Phyther Res; 2017. 31(10):16211632. DOI: 10.1002/ptr.5898

Kähkönen MP, Hopia AI, Heinonen M. Berry phenolics and their antioxidant activity. J Agric Food Chem; 2001. 49(8):4076–82. DOI: 10.1021/jf010152t

Ahmadi H, Fathi F, Moeini A, Amidi F, Sobhani A. Evaluation of prooxidant-antioxidant balance in in vitro fertilization-conceived mice. Clin Exp Reprod Med; 2018. 45(2):82-87. DOI: 10.5653/cerm.2018.45.2.82

Mirshekar M, Roghani M, Khalili M, Baluchnejadmojarad T. Chronic oral pelargonidin alleviates learning and memory disturbances in streptozotocin diabetic rats. Iran J Pharm Res; 2011. 10(3):569–75. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813041/

Vauzour D. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev; 2012. 914273. DOI: 10.1155/2012/914273

Speciale A, Cimino F, Saija A, Canali R, Virgili F. Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. Genes Nutr; 2014. 9(4):404. DOI: 10.1007/s12263014-0404-8

Wang Y, Zhao L, Lu F, Yang X, Deng Q, Ji B, et al. Retinoprotective effects of bilberry anthocyanins via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in a visible light-induced retinal degeneration model in pigmented rabbits. Molecules; 2015. 20(12):22395–410. DOI: 10.3390/molecules201219785

Krikorian R, Shidler MD, Nash TA, Kalt W, VinqvistTymchuk MR, Shukitt-Hale B, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem; 2010. 58(7):3996–4000. DOI: 10.1021/jf9029332

Murphy T, Dias GP, Thuret S. Effects of diet on brain plasticity in animal and human studies: Mind the gap. Neural Plast; 2014. 2014. DOI: http://dx.doi.org/10.1155/2014/56316

Downloads

Published

2018-12-21

How to Cite

Prabawati, R. K., Ratnawati, R., Rahayu, M., & Prakosa, A. G. (2018). EFFECT ANTHOCYANIN OF PURPLE POTATO GUNUNG KAWI ON MDA LEVELS, EXPRESSION OF CASPASE-3, AND SPATIAL MEMORY FUNCTION ON DIABETIC WISTAR RATS. MNJ (Malang Neurology Journal), 5(1), 34–41. Retrieved from https://mnj.ub.ac.id/index.php/mnj/article/view/355

Issue

Section

Research Article