THE EFFECT OF BETA GLUCAN OF SACCHAROMYCES CEREVISAE ON THE INCREASE OF THE NUMBER OF BRAIN CELLS IN SUBSTANTIA NIGRA BRAIN OF PARKINSON’S WISTAR STRAIN RAT (RATTUS NORVEGICUS) MODEL INDUCED WITH ROTENONE

Authors

  • Masruroh Rahayu Laboratorium Neurologi Fakultas Kedokteran Universitas Brawijaya, Malang
  • Shahdevi Nandar Kurniawan Laboratorium Neurologi Fakultas Kedokteran Universitas Brawijaya, Malang
  • Dini Jatiya Anggraini Program Studi Pendidikan Dokter Fakultas Kedokteran Universitas Brawijaya, Malang, Indonesia

Keywords:

Beta glucan, Saccharomyces cerevisae, number of brain cells, Parkinson

Abstract

Background. Beta glucan from Saccharomyces cerevisae is very potential to be used as a regenerative therapy of Parkinson's disease. Beta glucan can increase the mobilization of hematopoietic stem cells (HSCs) from the bone marrow into the damaged tissues.
Objective. To find out the effects of the addition of Saccharomyces cerevisae toward the number of brain cells in substantia nigra Parkinson’s rat model.
Methods. Experimental research in vivo using the draft of randomized post test only controlled group design.
Results. Treatment Group 3 (72 mg/kgBB) was a group with the largest number of brain cells than the other treatment groups. Statistical data obtained showed that the average number of brain cells in negative control group was 192.00 cells; positive control amounted to 116.80 cells; Treatment 1 amounted to 135.40 cells; Treatment 2 amounted to 140.80 cells; and Treatment 3 amounted to 161.80 cells.
Conclusion. The addition of Saccharomyces cerevisae with a dose of 18mg/kgBB, 36mg/kgBBdan 72mg/kgBB is able to increase the number of brain cells in the substantia nigra of the brain of Parkinson’s Strain Wistar rat model significantly.

References

Lau, de LM, Breteler MM.. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006. 5:525-35.

Dorsey, ER, Kollet, O, Farke, Christian. 2007. Projected Number of People with Parkinson Disease in the Most Populous Nations, 2005 through 2030. Rochester, USA : Department of Neurology University of Rochester Medical Center. 2007 Jan 30; 68(5):384-386.

LeWitt, Peter A.. Levodopa for the Treatment of Parkinson’s Disease. Massachussets: New England Journal Medicine. 2008. 359:24682476.

Lotharius, Julie, Brundin, Patrik. Pathogenesis Of Parkinson`s Disease : Dopamine, Vesicles and α-Synuclein. Nature Reviews: Neuroscience. 2002. Vol. 3;1 – 11.

Dauer, William, Przedborski, Serge. Parkinson`s Disease : Mechanisms and Models. Neuron. 2003.Vol. 39, 889–909.

Corselli, Mirko, Crisan, Mihaela, Lazzari, LorenzaKovack. Perivascular Ancestor of Multipotent Stem cells.American Hearth Association Journal Arterioscler Thromb Vasc Biol. 2010. 30:1104-1109.

Smith, Clayton. 2003. HematopoieticStem cells and Hematopoiesis. Blood marrow and transplant program. Florida: H.LeeMoffit Cancer Center.

Gierying A, Bogunia-KubikK.. The role of the SDF-1-CXCR4 axis in hematopoiesis and the mobilization of hematopoieticstem cells to peripheral blood.PostepyHig Med Dosw [Online]. 2007. 61:369–83.

FranzkeA..The role of G-CSF in adaptive immunity. Cytokine Growth Factor Rev.2006. 17:235–44.

Afzal, Aqeela, and Mocco, J. 2012. The Promise of HematopoieticStem cell Therapy for Stroke: Are We There Yet?, Advances in the Treatment of Ischemic Stroke, Dr. Maurizio Balestrino (Ed.), ISBN: 978-953-51-0136-9, InTech.

Hennemann, B., Ickenstein, G., Sauerbruch, S., Luecke, K., Haas, S., Horn, M., Andreesen, R., Bogdahn, U., Winkler, J.. Mobilization of CD34+ hematopoietic cells, colonyforming cells and long-term culture-initiating cells into the peripheral blood of patients with an acute cerebral ischemic insult. Cytotherapy.2008. 10(3):303-11.

Pawitan, Jeanne Adiwinata. Prospect of Cell Therapy For Parkinson’s Disease. Acb Journal: Anat Cell Biol. 2011. 44:256-264.

Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.M., and Peault, B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. U.S. A. 1992. Vol 89, 2804–2808.

Sharma, Neha, & Bafna, Pallavi. Effect of Cynodon dactylon on rotenone induced Parkinson’s disease. Orient Pharm Exp Med. 2012. 12:167–175.

Yamada, M., Iwatsubo, T., Mizuno, Y., and Mochizuki, H.. Overexpression of α-synuclein in rat substantia nigra results in loss of dopaminergic neurons, Phosphorylation of asynuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease Journal of Neurochemistry. 2004. 91, 451-461.

Carmeliet P, Ferreira V, Breier G. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996. 380(6573):435-439.

Brazelton, T.R., Rossi, F.M., Keshet, G.I., and Blau, H.M.. From marrow to brain: expression of neuronal phenotypes in adult mice. Science.

290, 1775–1779.

Waafi, A.K., Pratama, M.Z., Susanto, D.P., Dewi, A.R., Mahardika, M.V. HEPAREGS (Hepar Regenerated by Stem cells) : Pengembengan Terapi Regeneratif sebagai Alternatif Transplantasi pada Penyakit Sirosis Hepar dengan Menggunakan Ekstrak Oats (Avena sativa L.). PKMP DIKTI 2012. Program Studi Pendidikan Dokter Fakultas Kedokteran Universitas Brawijaya Malang.

Weimann, J.M., Charlton, C.A., Brazelton, T.R., Hackman, R.C., and Blau, H.M. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl. Acad. Sci. USA. 2003. 100. 2088–2093

Downloads

Published

2015-01-01

How to Cite

Rahayu, M., Kurniawan, S. N., & Anggraini, D. J. (2015). THE EFFECT OF BETA GLUCAN OF SACCHAROMYCES CEREVISAE ON THE INCREASE OF THE NUMBER OF BRAIN CELLS IN SUBSTANTIA NIGRA BRAIN OF PARKINSON’S WISTAR STRAIN RAT (RATTUS NORVEGICUS) MODEL INDUCED WITH ROTENONE. MNJ (Malang Neurology Journal), 1(1), 17–22. Retrieved from https://mnj.ub.ac.id/index.php/mnj/article/view/18

Issue

Section

Research Article